Ataşehir, İstanbul, Türkiye        +90 (216) 577 52 97

Anka Analitik » X-RAY SYSTEMS



Flexibility and Modularity without limits
EXPLORER is a multi-purpose – Theta/Theta – high resolution diffractometer. EXPLORER XRD has a direct drive torque motors that ensure best performances in various analytical areas, from phase analysis to determination of microstructural properties on bulk or thin film materials.
The wide range of accessories and attachments allows performing measurement in different settings such as: 

  • Traditional X-Ray Powder Diffraction (XRPD),   
  • Reflectometry (XRR),
  • Grazing Incidence X-Ray Diffraction (GIXRD),
  • High Resolution X-Ray Diffraction (HRXRD),
  • Smalle and Wide angle scattering (SAXS & WAXS),
  • Residual Stress and Texture X-Ray Diffraction.
  • Non-Ambient Analysis
  • Total X-Ray Fluorescence (TXRF)

EXPLORER XRD is flexible and alignment-free modular instrument. It can be modified and upgraded depending customer's requirements. GNR has a very wide range of accessory selections such as X-ray sources, optics, sample holders, detectors and configurations to satisfy all the analytical needs.

EXPLORER XRD can exceed customers' needs with no limit of applications and offers high performances in all analytical areas, ranging from phases quantification of mixtures, to the determination of microstructural properties as residual stress and preferred orientation of crystallites on bulk materials as well as on thin films.

  • Radiation enclosure with high accessibility, workspace and visibility.
  • Double safety circuit
  • Theta/Theta Vertical Goniometer, Direct Torque Motors, Goniometer Raduis = 200 - 300 mm. 
  • 3000 W X-Ray Generator (optional 4000 W).
  • Long Life, High Intensity and stability X-Ray Tube (Cu, Mo, Co, Cr, W, Ag Anode). 
  • Rotatable and Fixed Tube Shields.
  • Alignment-free modular Optics.
  • Motorized and Fixed Variable Divergence Slit 
  • HPC Technology CeleriX fast Detector (0D,1D, Optional:2D) reduce the acquisition time by a factor up to 1000
  • Standard sample holder, Reflection / transmission spinner sample holder
  • Auto-Sample changer, Ambient Chamber.
  • Eulerian Cradle 
  • Capillary sample stage.
  •  Knife Edge and Secondary Collimator (LESS)
  • Johansson, Parabolic mirror, 2 Bounce, 4 bounce monochromators 


Phase analysis and identification is the study of the different polycrystalline materials within an analytical samples. One phase is separated from another due to its unique powder diffraction pattern which arises from its unique combination of composition and crystal structure. 

The analysis is applicable to all types of crystalline materials and can be restricted to identification only or extended to full quantitative analysis.


Thin Film (GIXRD-XRR) Analysis

In phase analysis of thin films or multilayers, measurements can be done at low glancing angles of the X-ray beam to increase the intensity of the signal from the layers and to decrease the substrate reflections. During the measurement the incident angle remains fixed while the detector is scanned through the 2-theta range. In this configuration a parallel beam collimator (LESS) is attached on the reflected beam. 

The EXPLORER can accomplish in a single measurement the characterisation of  thin film layer thickness, density, surface and interface roughness. If the films are single or multilayer, only a few atoms or up to 500 nm thick, the procedure is fast, easy and completely non destructive.
The knife edge collimator ensures optimum collimation of the primary beam without the intensity reduction typical of crystal monochromators.

  • Phase Analysis of Thin film and Powder
  • Structure of Thin film and Powder
  • Thin film Lattice Strain Analysis
  • Structure of Thin film.
  • Thin film Lattice Strain Analysis
  • Thin film (single or multi layers) thickness, roughness and density analysis







The small-angle X-ray scattering (SAXS) technique is th3 ideally suited for the structural characterization of nanoscaled materials, and among others, allows for nanoparticle and pore size analysis and specific surface area determination.

Setups for SAXS measurements require a narrow, highly collimated and intense X-ray beam, the effective suppression of any parasitic scattering, and a detector with a high linearity range. The objective is to measure the scattered intensities in the immediate vicinity of the direct beam, typically down to 0.1 deg and below. The smallest accessible scattering angle determines the upper limit of the dimension (e.g. particle diameter) that can be studied

SAXS is applied to investigate structural details in the 0.5 to 50 nm size range in materials such as: 

  • Particle sizing of suspended nanopowders 
  • Life science and biotechnology (proteins, viruses, DNA complexes) 
  • Polymer films and fibers 
  • Catalyst surface per volume 
  • Micro-emulsions 
  • Liquid crystals 




Transmission XRD

In transmission X-ray diffraction experiments, the incident X-ray beam is not reflected by the sample, but instead travels through the sample, where the diffraction process takes place. 

Materials consisting of light atoms, such as organic compounds from the pharmaceutical or polymer industries, are "transparent" for X-rays. When X-ray diffraction experiments are performed on these materials in the Bragg-Brentano geometry, a large specimen displacement will occur as a result of the high transparency of the sample. In these cases, transmission experiments are advised. 
In the transmission geometry the X-ray beam, coming off the focus of the X-ray tube, is focused on the detector by an incident beam conditioner – an X-ray mirror, for instance. The foil sample is placed perpendicular to the diffraction plane in the incident beam. The X-ray beam is diffracted over the Bragg angle and focused on the detector on the 2Theta circle.

Transmission experiments can also be performed on samples in glass capillaries. The purpose of capillary samples is to allow the accurate measurements of small amounts of powder, which should not be exposed to air, or which are dangerous to the operator's health. Spinning of the samples brings more crystallites into the diffraction condition and reduces the influence of particle statistics on the measurements.



Texture Analysis

Texture analysis is a diffraction technique in which the orientation distribution of the crystallites constituting a sample is determined. 
In polycrystalline solid materials, such as a wide class of metals and ceramics, the orientation of the crystallites is not usually distributed randomly, like in an ideal powder specimen. In most cases, a preferred orientation of the crystallites with respect to the sample reference frame is present. In materials science this is referred to as texture. Knowledge of the texture is an important factor in understanding the mechanical, physical or chemical behavior of the material investigated.

thanks to the new Eulerian cradle and Mythen Hybrid Photon Counting linear detector, allows to perform texture analysis in an accurate and straightforward way.


              Rotating Tube Shiled                                                                                                                 Eulerian Cradle



Residual Stress Analysis

X-ray diffraction is commonly used to measure a materials crystal structure, crystal lattice orientation, and the spacing of the lattice planes.  Explorer are designed to measure the spacing of a specifically selected lattice plane reflections for a given material.  Explorer use various X-ray tubes selected to optimize these measurements for ferritic steel, stainless steel, aluminum, or magnesium alloys.  Explorer tracks the lattice spacing from the initial to current spacing while the specimen is under applied load in the plane of the sheet.  By tilting the samples from the normal direction of the sheet toward the direction of loading the distribution of strains can be measured and used to derive the full stress tensor just inside the sheet surface.


Non-ambient Diffraction

Non-ambient diffraction is the general term used for X-ray diffraction experiments performed at atmospheric conditions other than those normally existing in a laboratory environment.

Non-ambient diffraction experiments give information about the changes in the sample as a function of temperature, pressure or gas phase composition. Under changed atmospheric conditions, samples may show crystallographic phase transitions or they may perform chemical reactions with the gas phase. X-ray diffraction is non-destructive and gives unambiguous information about rearrangements in the crystal structure under changing environmental conditions.

There are several reasons to study materials in non-ambient conditions:
For the  pharmaceutical sector, an unexpected phase transition at an elevated temperature and  high humidity (during transport or storage for instance) may turn a powerful medicine into a useless powder. 
Chemical reactions with the gas phase can be measured in situ, giving direct information about reaction kinetics. 

HTK 16N / HTK 2000N - Filament heating up to 2300 °C

Temperature range
25 °C to 1600 °C (HTK 16N)
25 °C to 2300 °C (HTK 2000N)




Environmental heating for homogeneous sample temperature - HTK 1200 / HTK 1200 Capillary

Temperature range:
25 °C to 1200 °C




Low-temperature XRD studies between -190 °C and 600 °C - TTK 600

Temperature range
-190 °C to 600 °C (liquid-nitrogen cooling)
- 10 °C to 600 °C (compressed-air cooling)

  Facebook Page
  Twitter Page
  LinkedIn Page
    logo beyaz

    +90 (216) 577 52 96

    Karaman Çiftlik Yolu
    Kurucular Sitesi Hamza Bey Apt.
    NO:32/A Daire:6 34752
    İçerenköy / Ataşehir / İSTANBUL
    Copyright © 2012-2019 - All Rights Reserved